skip to main content


Search for: All records

Creators/Authors contains: "Tavanapong, Wallapak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a new annotated microscopic cellular image dataset to improve the effectiveness of machine learning methods for cellular image analysis. Cell counting is an important step in cell analysis. Typically, domain experts manually count cells in a microscopic image. Automated cell counting can potentially eliminate this tedious, time-consuming process. However, a good, labeled dataset is required for training an accurate machine learning model. Our dataset includes microscopic images of cells, and for each image, the cell count and the location of individual cells. The data were collected as part of an ongoing study investigating the potential of electrical stimulation to modulate stem cell differentiation and possible applications for neural repair. Compared to existing publicly available datasets, our dataset has more images of cells stained with more variety of antibodies (protein components of immune responses against invaders) typically used for cell analysis. The experimental results on this dataset indicate that none of the five existing models under this study are able to achieve sufficiently accurate count to replace the manual methods. The dataset is available at https://figshare.com/articles/dataset/Dataset/21970604. 
    more » « less
    Free, publicly-accessible full text available June 7, 2024
  2. Abstract

    Recent advances in deep neural networks have achieved outstanding success in natural language processing tasks. Interpretation methods that provide insight into the decision-making process of these models have received an influx of research attention because of the success and the black-box nature of the deep text classification models. Evaluation of these methods has been based on changes in classification accuracy or prediction confidence when removing important words identified by these methods. There are no measurements of the actual difference between the predicted important words and humans’ interpretation of ground truth because of the lack of interpretation ground truth. A large publicly available interpretation ground truth has the potential to advance the development of interpretation methods. Manual labeling important words for each document to create a large interpretation ground truth is very time-consuming. This paper presents (1) IDC, a new benchmark for quantitative evaluation of interpretation methods for deep text classification models, and (2) evaluation of six interpretation methods using the benchmark. The IDC benchmark consists of: (1) Three methods that generate three pseudo-interpretation ground truth datasets. (2) Three performance metrics: interpretation recall, interpretation precision, and Cohen’s kappa inter-agreement. Findings: IDC-generated interpretation ground truth agrees with human annotators on sampled movie reviews. IDC identifies Layer-wise Relevance Propagation and the gradient-by-input methods as the winning interpretation methods in this study.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)